
through the permeable wall the temperature of the latter decreases with increase in Re, and 
at sufficiently high Re the temperature of the wall and the liquid traveling toward it co- 
incide. 

The results of the numerical experiments indicate the effectiveness of the difference 
method described over a wide range of Reynolds and Grashof numbers. 

NOTATION 

x, y, Spatial coordinates; T, time; u, v, projections of velocity vector on x and y axes; 
~, flow function; e, vorticity; t, temperature; gx, gy, projections of acceleration created 
by external mass forces along x and y axes; 8, temperature expansion coefficient; ~, ~, e, a, 
coefficients of kinematic viscosity, thermal conductivity, heat liberation, and thermal dif- 
fusivity; p, c, density and specific heat of liquid; tm, temperature of external medium sur- 
rounding channel wall. 
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A NUMERICAL METHOD OF CALCULATING THE BOUNDARY OF 

STABILITY OF THERMALLY INDUCED ACOUSTIC OSCILLATIONS 

V. A. Sysoev, S. P. Gorbachev, 
and V. K. Matyushchenkov 

UDC 621.59:534.1:546.291 

We present the results of a theoretical and experimental study of the conditions 
under which thermally induced acoustic oscillations arise in nonisothermal pipe- 
lines of variable cross section. 

In cryogenic nonisothermal pipelines, closed at the warm end and open at the cold end, 
thermally induced oscillations can arise, accompanied by a large heat flux in the low temper- 
ature zone. The stability boundary of such oscillations determines the conditions under which 
they arise and it depends on the wall temperature profiles of the pipeline and its cross sec- 
tion. For the case in which the temperature distribution and the pipeline cross section along 
its length are specified by single-step functions, a stability analysis was given in [1-4]. 
In [5] a numerical study was made of the influence of the temperature profile on the stabil- 
ity of the oscillations. In the persent paper we solve the very same problem, but for a pipe- 
line of variable cross section. 

The set of equations with respect to the amplitude for the oscillations of a gas with a 
frequency ~ in a nonisothermal tube of variable cross section has the form [4]. 

o (rg{x)U)+ Opo u = o ,  (1) loop+ r~x) ox " ax 
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2. Temperature and cross-sectional profiles. 

TABLE i. Calculated and Experimental Results 

Temp. profile 
number 

Pipeline diam 
mm 

Freq., Hz 

Ampl. ofpre~ 
sure oscilla- 
tion, N / m  z 

Expt. 

=ale. 
~xpt. 
=alc. 
~xpt. 

E'xpt. 

2,7 
3,4 

27,8 
22,7 

2400 

3,2 
3,4 

28,1 
26,3 

1500 

3,7 
3,4 

28,0 
26,3 

900 

4 

4,0 
3,4 
28,2 
No oscillation 

No oscilla~om 

itoU + 1 dP 1 0 (00_~)  - - = v - -  I" �9 
Po dx r Or (2) 

ico ( T P ) + U dT~ ~, 1 0 ( O T )  
Po& dx Po% r O~ r ~  . (3) 

The system is completed by the addition of the linearized equation of state 

T :  P To P. (4) 

RPo P0 
This system may be reduced t o  a single equation for the amplitude of the pressure P, whose 
solution over a section of the pipeline witha constant temperature and a constant cross sec- 
tion is the following: 

P = Asinkx + Bcoskx. (5)  

In [3] the following junction conditions were determined at a point of discontinuity 
x= Z for the temperature and pipeline cross section functions: 

where 

P (I - -  0) = P (l + 0); 

( l--  0) : ,  (l + 0) 

G dP 
* =  k ~ d~ ' G =  r~ (x) elE, 

and kx, gl and E are functions of the complex variable n = (i~/v) X/2ro(x). 

(6) 

(7) 
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Fig. 3. Influence of the cross-sectional ratio M on the stability 
boundary for various slopes Sp of the nonisothermal section. ~T = 0.5; 
~S = 0.95; Tn/T c = 50. Curves 1-6 correspond to the upper branch of 
the stability boundary, curve 7 corresponds to the lower branch: i) 
Sp = 0.4; 2) 0.6; 3) 0.8; 4) 0.9; 5) 0.95; 6) 1.0; 7) 0.8. 

Fig. 4. Influence of the location of the nonisothermal section on the 
stability boundary for various cross section ratios: Tn/T c = 50; Sp = 
0.8; ~S = 0.95. Curves 1-4 are for the upper branch, curves 5-6 for the 
lower branch: i) M = 3.0; 2) 2.5; 3) 2.0; 4) 1.0; 5) 1.0; 6) 3.0. 

The numerical method we present for solving the oscillational stability problem is a 
further extension of the method used in [4] and consists in the following. The pipeline 
length is divided into N intervals on which the temperature and cross-sectional profiles are 
approximated by discrete piecewise-constant functions with discontinuities at the ends. The 
pressure amplitude distribution inside these intervals is determined by sectional functions 
of the form (5); the conditions (6) and (7) are satisfied at their endpoints. Upon satisfy- 
ing these conditions, we obtain a system of 2N equations with respect to their coefficients. 
The stability boundary is obtained by setting the determinant of this system equal to zero. 

To verify our method we checked our results experimentally and we also compared them 
with the analytical results given in [1-4] and the numerical solutions given in [5]. 

As experimental element we chose a tube with internal diameter do = 3.4 mm and length 
L = 2650 mm, which had at its end an axisymmetric capacity defined by its diameter dl = 14 
mm and its length H = i00 mm. The tube was placed in a cryostat with liquid helium. Dif- 
ferent wall temperature profiles were created due to the variation in the volumetric flow of 
the gas directed along the tube. The tube temperature was measured by thermocouples and im- 
pedance thermometers. The tube wall temperature profiles, obtained in the experiment, are 
shown in Fig. I. The amplitude of the pressure oscillations corresponding to these profiles 
decreases as the ordinal number increases. Profiles with steeper transitions from low to 
high temperature, as can he seen from the figure, stand close to the boundary of the domain 
of oscillations. At first glance this contradicts the general understanding, according to 
which an increase in the temperature gradient must lead to an amplification of the oscilla- 
tions. However, in the given case, simultaneously with an increase in the gradient there is 
a reduction in the low temperature section, and the latter is the reason for the vanishing of 
the oscillations. Pressure oscillations were recorded by means of a DD6S pressure transmitter. 
A comparison of the calculated and experimental data was made in the following way. An ex- 
perimentally determined temperature profile was given and then two boundary values for the 
diameter were calculated, which define an interval in which oscillations exist for a given 
profile. When oscillations are present the pipeline diameter must fall in this interval, and 
it must fail to do so in the absence of oscillations. The experimental and calculated values 
are shown in Table i, wherein only the minimum values of the pipeline diameter are given for 
which oscillations are possible. The maximum values extend over several tens of millimeters 
and more and are not supplied here. According to our calculations the oscillations must die 
away for a pipeline diameter lying between 3.7 mm and 4.0 mm. For a pipeline diameter of 3.4 
mm the deviation amounts to 10-20%, and, in our view, this lies within the allowable boundaries. 
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As an example, we consider the problem concerning the influence of the capacity at the 
warm end of a pipeline on the stability of the oscillations. It was shown in [4] that the 
influence of the capacity has a dual nature. The capacity can contribute to an excitation 
of the oscillations and it also can contribute to their attenuation. At the same time, in 
cryogenic technology, nonisothermal pipelines frequently involve elements of small volumetric 
capacity (pressure transmitters, valves, and vents). We studied the stability boundaryof 
oscillations for a pipeline with a small axisymmetric capacity, having a piecewise-linear 
temperature profile (Fig. 2). The slope of the temperature profile is characterized by the 
parameter Sp = (Z -- Ip)/l, and its position by ~T = I/L. The stability boundary (Figs. 3 and 
4) has two branches, which bound a domain of instability from above and below. Moreover, the 
position of the lower branch depends weakly on the slope of the temperature profile and the 
magnitude of the expansion at the end of the pipeline. The influence of these factors on the 
upper branch is substantial. As M increases (Fig. 3) the upper branch of the stability bound- 
ary turns upwards, and the more steeply it does so the larger the slope of the nonisothermal 
section of the temperature profile. Consequently, under these conditions, the capacity ex- 
pands beyond the domain of instability, i.e., it contributes to excitation of the oscilla- 
tions. The effect of capacity on the stability boundary also depends on the location of the 
nonisothermal section, which is defined by the parameter ~T (see Fig. 4). As the noniso- 
thermal section is displaced towards the cold end, the upper branch of the boundary is low- 
ered while the lower branch is raised, thus narrowing the domain of instability. Moreover, 
the lower boundary for a pipeline without capacity (M = i) lies below that for a pipeline 
with capacity (M = 3). This means that in this case the capacity attentuates the oscillations. 

NOTATION 

x, r, axial and radial coordinates; Po, Po, To, mean values of density, pressure and tem- 
perature; P, P, T, U, amplitudes of density, pressure, temperature and velocity fluctuations; 
l, gas thermal conductivity; Cp, isobaric heat capacity; o, Prandtl number; ~, kinematic vis- 
cosity of gas; a, sound velocity; ro(x), To(x), radius and temperature of the pipeline in the 
cross section x; Tc, wall temperature at the cold end; do, pipeline diameter; d,, diameter of 
the tanK; M = d~/do; ~, fluctuation frequency; kl, g~, E, functions of temperature and cross 
sections determined in [4]. Index c, values of parameters at temperature T c. 
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